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Abstract Recent events have highlighted the need for planners to consider the risk of disruptions
when designing supply chain networks. Supply chain disruptions have a number of
causes and may take a number of forms. Once a disruption occurs, there is very little
recourse regarding supply chain infrastructure because these strategic decisions can-
not be changed quickly. Therefore, it is critical to account for disruptions during the
design of supply chain networks so that they perform well even after a disruption.
Indeed, these systems can often be made substantially more reliable with only small
additional investments in infrastructure. Planners have a range of options available to
them in designing resilient supply chain networks, and their choice of approaches will
depend on the financial resources available, the decision maker’s risk preference, the
type of network under consideration, and other factors. In this tutorial, we present a
broad range of models for designing supply chains resilient to disruptions. We first cat-
egorize these models by the status of the existing network: A network may be designed
from scratch, or an existing network may be modified to prevent disruptions at some
facilities. We next divide each category based on the underlying optimization model
(facility location or network design) and the risk measure (expected cost or worst-case
cost).

Keywords facility location; network design; disruptions

1. Introduction

1.1. Motivation
Every supply chain faces disruptions of various sorts. Recent examples of major disruptions
are easy to bring to mind: Hurricanes Katrina and Rita in 2005 on the U.S. Gulf Coast
crippled the nation’s oil refining capacity (Mouawad [68]), destroyed large inventories of
coffee and lumber (Barrionuevo and Deutsch [3], Reuters [74]), and forced the rerouting of
bananas and other fresh produce (Barrionuevo and Deutsch [3]). A strike at two General
Motors parts plants in 1998 led to the shutdowns of 26 assembly plants, which ultimately
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resulted in a production loss of over 500,000 vehicles and an $809 million quarterly loss for
the company (Brack [13], Simison [88, 89]). An eight-minute fire at a Philips semiconductor
plant in 2001 brought one customer, Ericsson, to a virtual standstill while another, Nokia,
weathered the disruption (Latour [58]). Moreover, smaller-scale disruptions occur much more
frequently. For example, Wal-Mart’s Emergency Operations Center receives a call virtually
every day from a store or other facility with some sort of crisis (Leonard [60]).
There is evidence that superior contingency planning can significantly mitigate the effect of

a disruption. For example, Home Depot’s policy of planning for various types of disruptions
based on geography helped it get 23 of its 33 stores within Katrina’s impact zone open after
one day and 29 after one week (Fox [37]), and Wal-Mart’s stock prepositioning helped make
it a model for post-hurricane recovery (Leonard [60]). Similarly, Nokia weathered the 2001
Phillips fire through superior planning and quick response, ultimately allowing it to capture
a substantial portion of Ericsson’s market share (Latour [58]).
Recent books and articles in the business and popular press have pointed out the vul-

nerability of today’s supply chains to disruptions and the need for a systematic analysis
of supply chain vulnerability, security, and resiliency (Elkins et al. [35], Jüttner et al. [52],
Lynn [63], Rice and Caniato [76], Sheffi [84]). One common theme among these references
is that the tightly optimized, just-in-time, lean supply chain practices championed by prac-
titioners and OR researchers in recent decades increase the vulnerability of these systems.
Many have argued that supply chains should have more redundancy or slack to provide a
buffer against various sorts of uncertainty. Nevertheless, companies have historically been
reluctant to invest much in additional supply chain infrastructure or inventory, despite the
large payoff that such investments can have if a disruption occurs.
We argue that decision makers should take supply uncertainty (of which disruptions are

one variety) into account during all phases of supply chain planning, just as they account for
demand uncertainty. This is most critical during strategic planning because these decisions
cannot easily be modified. When a disruption strikes, there is very little recourse for strate-
gic decisions like facility location and network design. (In contrast, firms can often adjust
inventory levels, routing plans, production schedules, and other tactical and operational
decisions in real time in response to unexpected events.)
It is easy to view supply uncertainty and demand uncertainty as two sides of the same

coin. For example, a toy manufacturer may view stockouts of a hot new toy as a result of
demand uncertainty, but to a toy store, the stockouts look like a supply-uncertainty issue.
Many techniques that firms use to mitigate demand uncertainty—safety stock, supplier
redundancy, forecast refinements—also apply in the case of supply uncertainty. However, it
is dangerous to assume that supply uncertainty is a special case of demand uncertainty or
that it can be ignored by decision makers, because much of the conventional wisdom gained
from studying demand uncertainty does not hold under supply uncertainty. For example,
under demand uncertainty, it may be optimal for a firm to operate fewer distribution centers
(DCs) because of the risk-pooling effect and economies of scale in ordering (Daskin et al.
[27]), while under supply uncertainty, it may be optimal to operate more, smaller DCs so
that a disruption to one of them has lesser impact. Snyder and Shen [95] discuss this and
other differences between the two forms of uncertainty.
In this tutorial, we discuss models for designing supply chain networks that are resilient

to disruptions. The objective is to design the supply chain infrastructure so that it operates
efficiently (i.e., at low cost) both normally and when a disruption occurs. We discuss models
for facility location and network design. Additionally, we analyze fortification models that
can be used to improve the reliability of infrastructure systems already in place and for which
a complete reconfiguration would be cost prohibitive. The objective of fortification models
is to identify optimal strategies for allocating limited resources among possible mitigation
investments.
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1.2. Taxonomy and Tutorial Outline
We classify models for reliable supply chain design along three axes.
(1) Design vs. fortification. Is the model intended to create a reliable network assuming

that no network is currently in place, or to fortify an existing network to make it more
reliable?
(2) Underlying model. Reliability models generally have some classical model as their

foundation. In this tutorial, we consider models based on facility location and network design
models.
(3) Risk measure. As in the case of demand uncertainty, models with supply uncertainty

need some measure for evaluating risk. Examples include expected cost and minimax cost.
This tutorial is structured according to this taxonomy. Section 3 discusses design mod-
els, while §4 discusses fortification models, with subsections in each to divide the models
according to the remaining two axes. These sections are preceded by a review of the related
literature in §2 and followed by conclusions in §5.

2. Literature Review
We discuss the literature that is directly related to reliable supply chain network design
throughout this tutorial. In this section, we briefly discuss several streams of research that
are indirectly related. For more detailed reviews of facility location models under uncertainty,
the reader is referred to Daskin et al. [29], Owen and Daskin [70], and Snyder [90]. See
Daskin [26] or Drezner [33] for a textbook treatment of facility location theory. An excellent
overview of stochastic programming theory in general is provided in Higle [45].

2.1. Network Reliability Theory
The concept of supply chain reliability is related to network reliability theory (Colbourn [22],
Shier [86], Shooman [87]), which is concerned with calculating or maximizing the probability
that a graph remains connected after random failures due to congestion, disruptions, or
blockages. Typically, this literature considers disruptions to the links of a network, but some
papers consider node failures (Eiselt et al. [34]), and in some cases the two are equivalent.
Given the difficulty in computing the reliability of a given network, the goal is often to find
the minimum-cost network with some desirable property like two-connectivity (Monma [66],
Monma and Shalcross [67]), k-connectivity (Bienstock et al. [11], Grötschel et al. [41]), or
special ring structures (Fortz and Labbe [36]). The key difference between network reliability
models and the models we discuss in this tutorial is that network reliability models are
primarily concerned with connectivity; they consider the cost of constructing the network
but not the cost that results from a disruption, whereas our models consider both types of
costs and generally assume connectivity after a disruption.

2.2. Vector-Assignment Problems
Weaver and Church [104] introduce the vector-assignment P -median problem (VAPMP),
in which each customer is assigned to several open facilities according to an exogenously
determined frequency. For example, a customer might receive 75% of its demand from its
nearest facility, 20% from its second nearest, and 5% from its third nearest. This is simi-
lar to the assignment strategy used in many of the models below, but in our models the
percentages are determined endogenously based on disruptions rather than given as inputs
to the model. A vector-assignment model based on the uncapacitated fixed-charge location
problem (UFLP) is presented by Pirkul [73].

2.3. Multiple, Excess, and Backup Coverage Models
The maximum covering problem (Church and ReVelle [17]) locates a fixed number of facil-
ities to maximize the demands located within some radius of an open facility. It implicitly
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assumes that the facilities (e.g., fire stations, ambulances) are always available. Several
subsequent papers have considered the congestion at facilities when multiple calls are
received at the same time. The maximum expected covering location model (MEXCLM)
(Daskin [24, 25]) maximizes the expected coverage given a constant, systemwide probability
that a server is busy at any given time. The constant-busy-probability assumption is relaxed
in the maximum availability location problem (MALP) (ReVelle and Hogan [75]). A related
stream of research explicitly considers the queueing process at the locations; these “hyper-
cube” models are interesting as descriptive models but are generally too complex to embed
into an optimization framework (Berman et al. [10], Larson [56, 57]). See Berman and Krass
[6] and Daskin et al. [28] for a review of expected and backup coverage models. The pri-
mary differences between these models and the models we discuss in this tutorial are (1) the
objective function (coverage versus cost), and (2) the reason for a server’s unavailability
(congestion versus disruptions).

2.4. Inventory Models with Supply Disruptions
There is a stream of research in the inventory literature that considers supply disruptions in
the context of classical inventory models, such as the EOQ (Parlar and Berkin [72], Berk and
Arreola-Risa [5], Snyder [91]), (Q,R) (Gupta [42], Parlar [71], Mohebbi [64, 65]), and (s,S)
(Arreola-Risa and DeCroix [1]) models. More recent models examine a range of strategies for
mitigating disruptions, including dual sourcing (Tomlin [100]), demand management (Tomlin
[99]), supplier reliability forecasting (Tomlin [98], Tomlin and Snyder [101]), and product-
mix flexibility (Tomlin and Wang [102]). Few models consider disruptions in multiechelon
supply chain or inventory systems; exceptions include Kim et al. [53], Hopp et al. [47], and
Snyder and Shen [95].

2.5. Process Flexibility
At least five strategies can be employed in the face of uncertain demands: Expanding
capacity, holding reserve inventory, improving demand forecasts, introducing product com-
monality to delay the need for specialization, and adding flexibility to production plants.
A complete review of each strategy is beyond the scope of this tutorial. Many of these
strategies are fairly straightforward. Process flexibility, on the other hand, warrants a brief
discussion. Jordan and Graves [51] compare the expected lost sales that result from using a
set of fully flexible plants, in which each plant could produce each product, to a configuration
in which each plant produces only two products and the products are chained in such a way
that plant A produces products 1 and 2, plant B produces products 2 and 3, and so on, with
the last plant producing the final product as well as product 1. They refer to this latter
configuration as a 1-chain. They find that a 1-chain provides nearly all of the benefits of
total flexibility when measured by the expected number of lost sales. Based on this, they
recommend that flexibility be added to create fewer, longer chains of products and plants.
Bish et al. [12] study capacity allocation schemes for such chains (e.g., allocate capacity
to the nearest demands, to the highest-margin demands, or to a plant’s primary product).
They find that if the capacity is either very small or very large relative to the expected
demand, the gains from managing flexible capacity are outweighed by the need for additional
component inventory at the plants and the costs of order variability at suppliers. They then
provide guidelines for the use of one allocation policy relative to others based on the costs
of component inventory, component lead times, and profit margins. Graves and Tomlin [40]
extend the Jordan and Graves results to multistage systems. They contrast configuration
loss with configuration inefficiency. The former measures the difference between the shortfall
with total flexibility and the shortfall with a particular configuration of flexible plants. The
configuration inefficiency measures the effect of the interaction between stages in causing the
shortfall for a particular configuration. They show that this, in turn, is caused by two phe-
nomena: Floating bottlenecks and stage-spanning bottlenecks. Stage-spanning bottlenecks
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can arise even if demand is deterministic, as a result of misallocations of capacity across the
various stages of the supply chain. Beach et al. [4] and de Toni and Tonchia [30] provide
more detailed reviews of the manufacturing flexibility literature.

2.6. Location of Protection Devices
A number of papers in the location literature have addressed the problem of finding the
optimal location of protection devices to reduce the impact of possible disruptions to infras-
tructure systems. For example, Carr et al. [16] present a model for optimizing the placement
of sensors in water supply networks to detect maliciously injected contaminants. James and
Salhi [49] investigate the problem of placing protection devices in electrical supply net-
works to reduce the amount of outage time. Flow-interception models (Berman et al. [7])
have also been used to locate protection facilities. For example, Hodgson et al. [46] and
Gendreau et al. [39] use flow-interception models to locate inspection stations so as to maxi-
mize hazard avoidance and risk reduction in transportation networks. The protection models
discussed in this chapter differ from those models in that they do not seek the optimal
placement of physical protection devices or facilities. Rather, they aim at identifying the
most critical system components to harden or protect with limited protection resources (for
example, through structural retrofit, fire safety, increased surveillance, vehicle barriers, and
monitoring systems).

3. Design Models

3.1. Introduction
In this section, we discuss design models for reliable facility location and network design.
These models, like most facility location models, assume that no facilities currently exist;
they aim to choose a set of facility locations that perform well even if disruptions occur.
It is also straightforward to modify these models to account for facilities that may already
exist (e.g., by setting the fixed cost of those facilities to zero or adding a constraint that
requires them to be open). In contrast, the fortification models discussed in §4 assume that
all facility sites have been chosen and attempt to decide which facilities to fortify (pro-
tect against disruptions). One could conceivably formulate an integrated design/fortification
model whose objective would be to locate facilities and identify a subset of those facilities to
fortify against attacks. Formulation of such a model is a relatively straightforward extension
of the models we present below, though its solution would be considerably more difficult
because it would result in (at least) a tri-level optimization problem.
Most models for both classical and reliable facility location are design models, because as

“fortification” is a relatively new concept in the facility location literature. In the subsections
that follow, we introduce several design models, classified first according to the underlying
model (facility location or network design) and then according to risk measure (expected or
worst-case cost).

3.2. Facility Location Models

3.2.1. Expected Cost Models. In this section, we define the reliability fixed-charge
location problem (RFLP) (Snyder and Daskin [92]), which is based on the classical unca-
pacitated fixed-charge location problem (UFLP) (Balinski [2]). There is a fixed set I of
customer locations and a set J of potential facility locations. Each customer i ∈ I has an
annual demand of hi units, and each unit shipped from facility j ∈ J to customer i∈ I incurs
a transportation cost of dij . (We will occasionally refer to dij as the “distance” between j
and i, and use this notion to refer to “closer” or “farther” facilities.) Each facility site has
an annual fixed cost fj that is incurred if the facility is opened. Any open facility may serve
any customer (that is, there are no connectivity restrictions), and facilities have unlimited
capacity. There is a single product.
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Each open facility may fail (be disrupted) with a fixed probability q. (Note that the failure
probability q is the same at every facility. This assumption allows a compact description of
the expected transportation cost. Below, we relax this assumption and instead formulate a
scenario-based model that requires more decision variables but is more flexible.) Failures are
independent, and multiple facilities may fail simultaneously. When a facility fails, it cannot
provide any product, and the customers assigned to it must be reassigned to a nondisrupted
facility.
If customer i is not served by any facility, the firm incurs a penalty cost of θi per unit

of demand. This penalty may represent a lost-sales cost or the cost of finding an alternate
source for the product. It is incurred if all open facilities have failed, or if it is too expensive
to serve a customer from its nearest functional facility. To model this, we augment the facility
set J to include a dummy “emergency facility,” called u, that has no fixed cost (fu = 0)
and never fails. The transportation cost from u to i is diu ≡ θi. Assigning a customer to the
emergency facility is equivalent to not assigning it at all.
The RFLP uses two sets of decision variables:

Xj =

{
1, if facility j is opened,

0, otherwise,

Yijr =

{
1, if customer i is assigned to facility j at level r,

0, otherwise.

A “level-r” assignment is one for which there are r closer open facilities. For example,
suppose that the three closest open facilities to customer i are facilities 2, 5, and 8, in
that order. Then facility 2 is i’s level-0 facility, 5 is its level-1 facility, and 8 is its level-2
facility. Level-0 assignments are to “primary” facilities that serve the customer under normal
circumstances, while level-r assignments (r > 0) are to “backup” facilities that serve it if
all closer facilities have failed. A customer must be assigned to some facility at each level r
unless it is assigned to the emergency facility at some level s≤ r. Because we do not know
in advance how many facilities will be open, we extend the index r from 0 through |J | − 1,
but Yijr will equal 0 for r greater than or equal to the number of open facilities.
The objective of the RFLP is to choose facility locations and customer assignments to

minimize the fixed cost plus the expected transportation cost and lost-sales penalty. We
formulate it as an integer programming problem as follows.

(RFLP) minimize
∑
j∈J

fjXj +
∑
i∈I

|J|−1∑
r=0


 ∑

j∈J\{u}
hidijq

r(1− q)Yijr +hidiuq
rYiur


 (1)

subject to∑
j∈J

Yijr +
r−1∑
s=0

Yius = 1 ∀ i∈ I, r= 0, . . . , |J | − 1 (2)

Yijr ≤Xj ∀ i∈ I, j ∈ J, r= 0, . . . , |J | − 1 (3)
|J|−1∑
r=0

Yijr ≤ 1 ∀ i∈ I, j ∈ J (4)

Xj ∈ {0,1} ∀ j ∈ J (5)

Yijr ∈ {0,1} ∀ i∈ I, j ∈ J, r= 0, . . . , |J | − 1 (6)

The objective function (1) minimizes the sum of the fixed cost and the expected trans-
portation and lost-sales costs. The second term reflects the fact that if customer i is assigned
to facility j at level r, it will actually be served by j if all r closer facilities have failed (which
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happens with probability qr) and if j itself has not failed (which happens with probability
1− q). Note that we can compute this expected cost knowing only the number of facilities
that are closer to i than j, but not which facilities those are. This is a result of our assump-
tion that every facility has the same failure probability. If, instead, customer i is assigned
to the emergency facility at level r, then it incurs the lost-sales cost diu ≡ θi if its r closest
facilities have failed (which happens with probability qr).
Constraints (2) require each customer i to be assigned to some facility at each level r,

unless i has been assigned to the emergency facility at level s < r. Constraints (3) prevent
an assignment to a facility that has not been opened, and constraints (4) prohibit a cus-
tomer from being assigned to the same facility at more than one level. Constraints (5) and
(6) require the decision variables to be binary. However, constraints (6) can be relaxed to
nonnegativity constraints because single sourcing is optimal in this problem, as it is in
the UFLP.
Note that we do not explicitly enforce the definition of “level-r assignment” in this for-

mulation; that is, we do not require Yijr = 1 only if there are exactly r closer open facilities.
Nevertheless, in any optimal solution, this definition will be satisfied because it is optimal
to assign customers to facilities by levels in increasing order of distance. This is true because
the objective function weights decrease for larger values of r, so it is advantageous to use
facilities with smaller dij at smaller assignment levels. A slight variation of this result is
proven rigorously by Snyder and Daskin [92].
Snyder and Daskin [92] present a slightly more general version of this model in which some

of the facilities may be designated as “nonfailable.” If a customer is assigned to a nonfailable
facility at level r, it does not need to be assigned at any higher level. In addition, Snyder
and Daskin [92] consider a multiobjective model that minimizes the weighted sum of two
objectives, one of which corresponds to the UFLP cost (fixed cost plus level-0 transportation
costs) while the other represents the expected transportation cost (accounting for failures).
By varying the weights on the objectives, Snyder and Daskin [92] generate a trade-off curve
and use this to demonstrate that the RFLP can produce solutions that are much more
reliable than the classical UFLP solution but only slightly more expensive by the UFLP
objective. This suggests that reliability can be “bought” relatively cheaply. Finally, Snyder
and Daskin [92] also consider a related model that is based on the P -median problem (Hakimi
[43, 44]) rather than the UFLP. They solve all models using Lagrangian relaxation.
In general, the optimal solution to the RFLP uses more facilities than that of the UFLP.

This tendency toward diversification occurs so that any given disruption affects a smaller
portion of the system. It may be viewed as a sort of “risk-diversification effect” in which it is
advantageous to spread the risk of supply uncertainty across multiple facilities (encouraging
decentralization). This is in contrast to the classical risk-pooling effect, which encourages
centralization to pool the risk of demand uncertainty (Snyder and Shen [95]).
Berman et al. [8] consider a model similar to (RFLP), based on the P -median problem

rather than the UFLP. They allow different facilities to have different failure probabilities,
but the resulting model is highly nonlinear and, in general, must be solved heuristically.
They prove that the Hakimi property applies if colocation is allowed. (The Hakimi property
says that optimal locations exist at the nodes of a network, even if facilities are allowed on
the links.) Berman et al. [9] present a variant of this model in which customers do not know
which facilities are disrupted before visiting them and must traverse a path from one facility
to the next until an operational facility is found. For example, a customer might walk to the
nearest ATM, find it out of order, and then walk to the ATM that is nearest to the current
location. They investigate the spatial characteristics of the optimal solution and discuss the
value of reliability information.
An earlier attempt at addressing reliability issues in P -median problems is discussed by

Drezner [32], who examines the problem of locating P unreliable facilities in the plane so
as to minimize expected travel distances between customers and facilities. As in the RFLP,
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the unreliable P -median problem in Drezner [32] is defined by introducing a probability
that a facility becomes inactive but does not require the failures to be independent events.
The problem is solved through a heuristic procedure. A more sophisticated method to solve
the unreliable P -median problem was subsequently proposed in Lee [59]. Drezner [32] also
presents the unreliable (P,Q)-center problem where P facilities must be located while taking
into account that Q of them may become unavailable simultaneously. The objective is to
minimize the maximal distance between demand points and their closest facilities.
The formulation given above for (RFLP) captures the expected transportation cost with-

out using explicit scenarios to describe the uncertain events (disruptions). An alternate
approach is to model the problem as a two-stage stochastic programming problem in which
the location decisions are first-stage decisions and the assignment decisions are made in
the second stage, after the random disruptions have occurred. This approach can result in
a much larger IP model because 2|J| possible failure scenarios exist, and each requires its
own assignment variables. That is, in the formulation above we have |J | Y variables for
each i, j (indexed Yijr, r = 0, . . . , |J | − 1), while in the scenario-based formulation we have
2|J| variables for each i, j. However, formulations built using this approach can be solved
using standard stochastic programming methods. They can also be adapted more readily to
handle side constraints and other variations.
For example, suppose facility j can serve at most bj units of demand at any given time.

These capacity constraints must be satisfied both by “primary” assignments and by reas-
signments that occur after disruptions. Let S be the set of failure scenarios such that ajs = 1
if facility j fails in scenario s, and let qs be the probability that scenario s occurs. Finally,
let Yijs equal 1 if customer i is assigned to facility j in scenario s and 0 otherwise. The
capacitated RFLP can be formulated using the scenario-based approach as follows.

(CRFLP) minimize
∑
j∈J

fjXj +
∑
s∈S

qs

∑
i∈I

∑
j∈J

hidijYijs (7)

subject to∑
j∈J

Yijs = 1 ∀ i∈ I, s∈ S (8)

Yijs ≤Xj ∀ i∈ I, j ∈ J, s∈ S (9)∑
i∈I

hiYijs ≤ (1− ajs)bj ∀ j ∈ J, s∈ S (10)

Xj ∈ {0,1} ∀ j ∈ J (11)

Yijs ∈ {0,1} ∀ i∈ I, j ∈ J, s∈ S (12)

Note that the set J in this formulation still includes the emergency facility u. The objec-
tive function (7) computes the sum of the fixed cost plus the expected transportation cost,
taken across all scenarios. Constraints (8) require every customer to be assigned to some
facility (possibly u) in every scenario, and constraints (9) require this facility to be opened.
Constraints (10) prevent the total demand assigned to facility j in scenario s from exceed-
ing j’s capacity and prevent any demand from being assigned if the facility has failed in
scenario s. Constraints (11) and (12) are integrality constraints. Integrality can be relaxed
to nonnegativity for the Y variables if single-sourcing is not required. (Single-sourcing is no
longer optimal because of the capacity constraints.)
(CRFLP) can be modified easily without destroying its structure, in a way that (RFLP)

cannot. For example, if the capacity during a disruption is reduced but not eliminated, we
can simply redefine ajs to be the proportion of the total capacity that is affected by the
disruption. We can also easily allow the demands and transportation costs to be scenario
dependent.
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The disadvantage, of course, is that the number of scenarios grows exponentially with |J |.
If |J | is reasonably large, enumerating all of the scenarios is impractical. In this case, one gen-
erally must use sampling techniques such as sample average approximation (SAA) (Kleywegt
et al. [54], Linderoth et al. [62], Shapiro and Homem-de-Mello [83]), in which the optimization
problem is solved using a subset of the scenarios sampled using Monte Carlo simulation. By
solving a series of such problems, one can develop bounds on the optimal objective value and
the objective value of a given solution. Ülker and Snyder [103] present a method for solving
(CRFLP) that uses Lagrangian relaxation embedded in an SAA scheme.
An ongoing research project has focused on extending the models discussed in this section

to account for inventory costs when making facility location decisions. Jeon et al. [50] con-
sider facility failures in a location-inventory context that is similar to the models proposed
recently by Daskin et al. [27] and Shen et al. [85], which account for the cost of cycle and
safety stock. The optimal number of facilities in the models by Daskin et al. [27] and Shen
et al. [85] is smaller than those in the UFLP due to economies of scale in ordering and the
risk-pooling effect. Conversely, the optimal number of facilities is larger in the RFLP than
in the UFLP to reduce the impact of any single disruption. The location-inventory model
with disruptions proposed by Jeon et al. [50] finds a balance between these two competing
tendencies.

3.2.2. Worst-Case Cost Models. Models that minimize the expected cost, as in §3.2.1,
take a risk-neutral approach to decision making under uncertainty. Risk-averse decision
makers may be more inclined to minimize the worst-case cost, taken across all scenarios.
Of course, in this context, it does not make sense to consider all possible scenarios, because
otherwise the worst-case scenario is always the one in which all facilities fail. Instead, we
might consider all scenarios in which, say, at most three facilities fail, or all scenarios with
probability at least 0.01, or some other set of scenarios identified by managers as worth
planning against. In general, the number of scenarios in such a problem is smaller than in
the expected-cost problem because scenarios that are clearly less costly than other scenarios
can be omitted from consideration. For example, if we wish to consider scenarios in which
at most three facilities fail, we can ignore scenarios in which two or fewer fail.
To formulate the minimax-cost RFLP, we introduce a single additional decision variable U ,

which equals the maximum cost.

(MMRFLP) minimize U (13)
subject to∑

j∈J

fjXj +
∑
i∈I

∑
j∈J

hidijYijs ≤U ∀s∈ S (14)

∑
j∈J

Yijs = 1 ∀ i∈ I, s∈ S (15)

Yijs ≤ (1− ajs)Xj ∀ i∈ I, j ∈ J, s∈ S (16)

Xj ∈ {0,1} ∀ j ∈ J (17)

Yijs ∈ {0,1} ∀ i∈ I, j ∈ J, s∈ S (18)

In this formulation, we omit the capacity constraints (10), but they can be included without
difficulty. Unfortunately, minimax models tend to be much more difficult to solve exactly,
either with general-purpose IP solvers or with customized algorithms. This is true for clas-
sical problems as well as for (MMRFLP).
The regret of a solution under a given scenario is the relative or absolute difference between

the cost of the solution under that scenario and the optimal cost under that scenario. One can
modify (MMRFLP) easily to minimize the maximum regret across all scenarios by replacing
the right side of (14) with U + zs (for absolute regret) or zs(1 + U) (for relative regret).
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Here, zs is the optimal cost in scenario s, which must be determined exogenously for each
scenario and provided as an input to the model.
Minimax-regret problems may require more scenarios than their minimax-cost counter-

parts because it is not obvious a priori which scenarios will produce the maximum regret.
On the other hand, they tend to result in a less pessimistic solution than minimax-cost mod-
els do. Snyder and Daskin [94] discuss minimax-cost and minimax-regret models in further
detail.
One common objection to minimax models is that they are overly conservative because

the resulting solution plans against a single scenario, which may be unlikely even if it is
disastrous. In contrast, expected-cost models like the CRFLP produce solutions that perform
well in the long run but may perform poorly in some scenarios. Snyder and Daskin [94]
introduce a model that avoids both problems by minimizing the expected cost (7) subject
to a constraint on the maximum cost that can occur in any scenario (in effect, treating U
as a constant in (14)). An optimal solution to this model is guaranteed to perform well in
the long run (due to the objective function) but is also guaranteed not to be disastrous in
any given scenario. This approach is closely related to the concept of p-robustness in robust
optimization problems (Kouvelis and Yu [55], Snyder and Daskin [93]). One computational
disadvantage is that, unlike the other models we have discussed, it can be difficult (even
NP-complete) to find a feasible solution or to determine whether a given instance is feasible.
See Snyder and Daskin [94] for more details on this model and for a discussion of reliable
facility location under a variety of other risk measures.
Church et al. [20] use a somewhat different approach to model worst-case cost design

problems, the rationale being that the assumption of independent facility failures underlying
the previous models does not hold in all application settings. This is particularly true when
modeling intentional disruptions. As an example, a union or a terrorist could decide to
strike those facilities in which the greatest combined harm (as measured by increased costs,
disrupted service, etc.) is achieved. To design supply systems able to withstand intentional
harms by intelligent perpetrators, Church et al. [20] propose the resilient P -median problem.
This model identifies the best location of P facilities so that the system works as well as
possible (in terms of weighted distances) in the event of a maximally disruptive strike. The
model is formulated as a bilevel optimization model, in which the upper-level problem of
optimally locating P facilities embeds a lower-level optimization problem used to generate
the weighted distance after a worst-case loss of R of these located P facilities. This bilevel
programming approach has been widely used to assess worst-case scenarios and identify
critical components in existing systems and will be discussed in more depth in §4.2.2. Church
et al. [20] demonstrate that optimal P -median configurations can be rendered very inefficient
in terms of worst-case loss, even for small values of R. They also demonstrate that resilient
design configurations can be near optimal in efficiency as compared to the optimal P -median
configurations, but at the same time, maintain high levels of efficiency after worst-case loss.
A form of the resilient design problem has also been developed for a coverage-type service
system (O’Hanley and Church [69]). The resilient coverage model finds the optimal location
of a set of facilities to maximize a combination of initial demand coverage and the minimum
coverage level following the loss of one or more facilities. There are several approaches that
one can employ to solve this problem, including the successive use of super-valid inequalities
(O’Hanley and Church [69]), reformulation into a single-level optimization problem when
R= 1 or R= 2 (Church et al. [20]), or by developing a special search tree. Research is
underway to model resilient design for capacitated problems.

3.3. Network Design Models
We now turn our attention from reliability models based on facility location problems to
those based on network design models. We have a general network G= (V,A). Each node
i ∈ V serves as either a source, sink, or transshipment node. Source nodes are analogous
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to facilities in §3.2 while sink nodes are analogous to customers. The primary difference
between network design models and facility location ones is the presence of transshipment
nodes. Product originates at the source nodes and is sent through the network to the sink
nodes via transshipment nodes.
Like the facilities in §3.2, the nonsink nodes in these models can fail randomly. The

objective is to make open/close decisions on the nonsink nodes (first-stage variables) and
determine the flows on the arcs in each scenario (second-stage variables) to minimize the
expected or worst-case cost. (Many classical network design problems involve open/close
decisions on arcs, but the two are equivalent through a suitable transformation.)

3.3.1. Expected Cost. Each node j ∈ V has a supply bj . For source nodes, bj represents
the available supply and bj > 0; for sink nodes, bj represents the (negative of the) demand
and bj < 0; for transshipment nodes, bj = 0. There is a fixed cost fj to open each nonsink
node. Each arc (i, j) has a cost of dij for each unit of flow transported on it, and each
nonsink node j has a capacity kj . The node capacities can be seen as production limitations
for the supply nodes and processing resource restrictions for the transhipment nodes.
As in §3.2.1, we let S be the set of scenarios, and ajs = 1 if node j fails in scenario s.

Scenario s occurs with probability qs. To ensure feasibility in each scenario, we augment V
by adding a dummy source node u that makes up any supply shortfall caused by disruptions
and a dummy sink node v that absorbs any excess supply. There is an arc from u to each
(nondummy) sink node; the per-unit cost of this arc is equal to the lost-sales cost for that
sink node (analogous to θi in §3.2.1). Similarly, there is an arc from each (nondummy) source
node to v whose cost equals 0. The dummy source node and the dummy sink node have
infinite supply and demand, respectively.
Let V0 ⊆ V be the set of supply and transhipment nodes, i.e., V0 = {j ∈ V | bj ≥ 0}. We

define two sets of decision variables. Xj = 1 if node i is opened and 0 otherwise, for j ∈ V0,
and Yijs is the amount of flow sent on arc (i, j) ∈ A in scenario s ∈ S. Note that the set A
represents the augmented set of arcs, including the arcs outbound from the dummy source
node and the arcs inbound to the dummy sink node. With this notation, the reliable network
design model (RNDP) is formulated as follows.

(RNDP) minimize
∑
j∈V0

fjXj +
∑
s∈S

qs

∑
(i, j)∈A

dijYijs (19)

subject to∑
(j, i)∈A

Yjis −
∑

(i, j)∈A

Yijs = bj ∀ j ∈ V \{u, v}, s∈ S (20)

∑
(j, i)∈A

Yjis ≤ (1− ajs)kjXj ∀ j ∈ V0, s∈ S (21)

Xj ∈ {0,1} ∀ j ∈ V0 (22)

Yijs ≥ 0 ∀ (i, j)∈A, s∈ S (23)

The objective function computes the fixed cost and expected flow costs. Constraints (20)
are the flow-balance constraints for the nondummy nodes; they require the net flow for node
j (flow out minus flow in) to equal the node’s deficit bj in each scenario. Constraints (21)
enforce the node capacities and prevent any flow emanating from a node j that has not
been opened (Xj = 0) or has failed (ajs = 1). Taken together with (20), these constraints are
sufficient to ensure that flow is also prevented into nodes that are not opened or have failed.
Constraints (22) and (23) are integrality and nonnegativity constraints, respectively. Note
that in model (19)–(23), no flow restrictions are necessary for the two dummy nodes. The
minimization nature of the objective function guarantees that the demand at each sink node
is supplied from regular source nodes whenever this is possible. Only if the node disruption
is such to prevent some demand node i from being fully supplied will there be a positive
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flow on the link (u, i) at the cost dui = θi. Similarly, only excess supply that cannot reach a
sink node will be routed to the dummy sink.
This formulation is similar to the model introduced by Santoso et al. [78]. Their model is

intended for network design under demand uncertainty, while ours considers supply uncer-
tainty, though the two approaches are quite similar. To avoid enumerating all possible
scenarios, Santoso et al. [78] use SAA. A similar approach is called for to solve (RNDP)
because, as in the scenario-based models in §3.2.1, if each node can fail independently, we
have 2|V0| scenarios.
A scenario-based model for the design of failure-prone multicommodity networks is dis-

cussed in Garg and Smith [38]. However, the model in Garg and Smith [38] does not consider
the expected costs of routing the commodities through the network. Rather, it determines
the minimum-cost set of arcs to be constructed so that the resulting network continues to
support a multicommodity flow under any of a given set of failure scenarios. Only a restricted
set of failure scenarios is considered, in which each scenario consists of the concurrent failure
of multiple arcs. Garg and Smith [38] also discuss several algorithmic implementations of
Benders decomposition to solve this problem efficiently.

3.3.2. Worst-Case Cost. One can modify (RNDP) to minimize the worst-case cost
rather than the expected cost in a manner analogous to the approach taken in §3.2.2.

minimize U (24)

subject to
∑
i∈V0

fiXi+
∑

(i, j)∈A

dijYijs ≤U ∀s∈ S (25)

(20)–(23)

Similarly, one could minimize the expected cost subject to a constraint on the cost in
any scenario, as proposed above. Bundschuh et al. [15] take a similar approach in a supply
chain network design model (with open/close decisions on arcs). They assume that suppliers
can fail randomly. They consider two performance measures, which they call reliability and
robustness. The reliability of the system is the probability that all suppliers are operable,
while robustness refers to the ability of the supply chain to maintain a given level of output
after a failure. The latter measure is perhaps a more reasonable goal because adding new sup-
pliers increases the probability that one or more will fail and, hence, decreases the system’s
“reliability.” They present models for minimizing the fixed and (nonfailure) transportation
costs subject to constraints on reliability, robustness, or both. Their computational results
support the claim made by Snyder and Daskin [92, 94] and others that large improvements
in reliability can often be attained with small increases in cost.

4. Fortification Models

4.1. Introduction
Computational studies of the models discussed in the previous sections demonstrate that the
impact of facility disruptions can be mitigated by the initial design of a system. However,
redesigning an entire system is not always reasonable given the potentially large expense
involved with relocating facilities, changing suppliers, or reconfiguring networked systems.
As an alternative, the reliability of existing infrastructure can be enhanced through efficient
investments in protection and security measures. In light of recent world events, the identifi-
cation of cost-effective protection strategies has been widely perceived as an urgent priority
that demands not only greater public policy support (Sternberg and Lee [97]), but also
the development of structured and analytical approaches (Jüttner et al. [52]). Planning for
facility protection, in fact, is an enormous financial and logistical challenge if one considers
the complexity of today’s logistics systems, the interdependencies among critical infrastruc-
tures, the variety of threats and hazards, and the prohibitive costs involved in securing large
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numbers of facilities. Despite the acknowledged need for analytical models able to capture
these complexities, the study of mathematical models for allocation of protection resources
is still in its infancy. The few fortification models that have been proposed in the literature
are discussed in this section, together with possible extensions and variations.

4.2. Facility Location Models
Location models that explicitly address the issue of optimizing facility protection assume
the existence of a supply system with P operating facilities. Facilities are susceptible to
deliberate sabotage or accidental failures, unless protective measures are taken to prevent
their disruption. Given limited protection resources, the models aim to identify the subset
of facilities to protect to minimize efficiency losses due to intentional or accidental disrup-
tions. Typical measures of efficiency are distance traveled, transportation cost, or captured
demand.

4.2.1. Expected Cost Models. In this section, we present the P -median fortification
problem (PMFP) (Scaparra [79]). This model builds on the well-known P -median problem
(Hakimi [43, 44]). It assumes that the P facilities in the system have unlimited capacity
and that the system users receive service from their nearest facility. As in the design model
RFLP, each facility may fail or be disrupted with a fixed probability q. A disrupted facility
becomes inoperable, so that the customers currently served by it must be reassigned to their
closest nondisrupted facility. Limited fortification resources are available to protect Q of the
P facilities. A protected facility becomes immune to disruption. The PMFP identifies the
fortification strategy that minimizes the expected transportation costs.
The model definition builds on the notation used in the previous sections, with the excep-

tion that J now denotes the set of existing, rather than potential, facilities. Additionally, let
ik denote the kth closest facility to customer i, and let dk

i be the expected transportation
cost between customer i and its closest operational facility, given that the k − 1 closest
facilities to i are not protected, and the kth closest facility to i is protected. These expected
costs can be calculated as follows.

dk
i =

k−1∑
j=1

qj−1(1− q)diij
+ qk−1diik

(26)

The PMFP uses two sets of decision variables:

Zj =

{
1, if facility j is fortified,

0, otherwise

Wik =



1, if the k− 1 closest facilities to customer i are not protected but the kth

closest facility is,

0, otherwise.

Then PMFP can be formulated as the following mixed integer program.

(PMFP) minimize
∑
i∈I

P−Q+1∑
k=1

hid
k
i Wik (27)

subject to
P−Q+1∑

k=1

Wik = 1 ∀ i∈ I, (28)

Wik ≤Zik
∀ i∈ I, k= 1, . . . , P −Q+1 (29)
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Wik ≤ 1−Zik−1 ∀ i∈ I, k= 2, . . . , P −Q+1 (30)∑
j∈J

Zj =Q (31)

Wik ∈ {0,1} ∀ i∈ I, k= 1, . . . , P −Q+1 (32)

Zj ∈ {0,1} ∀ j ∈ J (33)

The objective function (27) minimizes the weighted sum of expected transportation costs.
Note that the expected costs dk

i and the variables Wik need only be defined for values of
k between 1 and P − Q + 1. In fact, in the worst case, the closest protected facility to
customer i is its (P − Q+ 1)st-closest facility. This occurs if the Q fortified facilities are
the Q furthest facilities from i. If all of the P − Q closest facilities to i fail, customer i
is assigned to its (P − Q + 1)st-closest facility. Assignments to facilities that are further
than the (P −Q+1)st-closest facility will never be made in an optimal solution. For each
customer i, constraints (28) force exactly one of the P −Q+ 1 closest facilities to i to be
its closest protected facility. The combined use of constraints (29) and (30) ensures that the
variable Wik that equals 1 is the one associated with the smallest value of k such that the
kth closest facility to i is protected. Constraint (31) specifies that only Q facilities can be
protected. Finally, constraints (32) and (33) represent the integrality requirements of the
decision variables.
The PMFP is an integer programming model and can be solved with general purpose

mixed-integer programming software. Possible extensions of the model include the cases in
which facilities have different failure probabilities and fortification only reduces, but does
not eliminate, the probability of failure. Unfortunately, (PMFP) cannot be easily adjusted
to handle capacity restrictions. As for the design version of the problem, if the system
facilities have limited capacities, explicit scenarios must be used to model possible disruption
patterns. The capacitated version of (PMFP) can be formulated in an analogous way to the
scenario-based model (CRFLP) discussed in §3.2.1.

(CPMFP) minimize
∑
s∈S

qs

∑
i∈I

∑
j∈J

hidijYijs (34)

subject to∑
j∈J

Yijs = 1 ∀ i∈ I, s∈ S (35)

∑
i∈I

hiYijs ≤ (1− ajs)bj + ajsbjZj ∀ j ∈ J, s∈ S (36)

∑
j∈J

Zj =Q (37)

Xj ∈ {0,1} ∀ j ∈ J (38)

Yijs ∈ {0,1} ∀ i∈ I, j ∈ J, s∈ S (39)

(CPMFP) uses the same parameters ajs and set S as (CRFLP) to model different
scenarios. It also assumes that the set of existing facilities J is augmented with the unlimited-
capacity emergency facility u. CPMFP differs from CRFLP only in a few aspects: No deci-
sions must be made in terms of facility location, so the fixed cost for locating facilities are
not included in the objective; the capacity constraints (36) must reflect that if a facility j is
protected (Zj = 1), then that facility remains operable (and can supply bj units of demand)
even in those scenarios s that assume its failure (ajs = 1). Finally, constraint (37) must be
added to fix the number of possible fortifications.
Note that in both models (PMFP) and (CPMFP), the cardinality constraints (31) and

(37) can be replaced by more general resource constraints to handle the problem in which
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each facility requires a different amount of protection resources and there is a limit on the
total resources available for fortification. Alternately, one could incorporate this cost into
the objective function and omit the budget constraint. The difference between these two
approaches is analogous to that between the P -median problem and the UFLP.

4.2.2. Worst-Case Cost Models. When modeling protection efforts, it is crucial to
account for hazards to which a facility may be exposed. It is evident that protecting
against intentional attacks is fundamentally different from protecting against acts of nature.
Whereas nature hits at random and does not adjust its behavior to circumvent security
measures, an intelligent adversary may adjust its offensive strategy depending on which
facilities have been protected, for example, by hitting different targets. The expected cost
models discussed in §4.2.1 do not take into account the behavior of adversaries and are,
therefore, more suitable to model situations in which natural and accidental failures are a
major concern. The models in this section have been developed to identify cost-effective
protection strategies against malicious attackers.
A natural way of looking at fortification problems involving intelligent adversaries is within

the framework of a leader-follower or Stackelberg game [96], in which the entity responsible
for coordinating the fortification activity, or defender, is the leader and the attacker, or
interdictor, is the follower. Stackelberg games can be expressed mathematically as bilevel
programming problems (Dempe [31]): The upper-level problem involves decisions to deter-
mine which facilities to harden, whereas the lower-level problem entails the interdictor’s
response of which unprotected facilities to attack to inflict maximum harm. Even if in prac-
tice we cannot assume that the attacker is always able to identify the best attacking strategy,
the assumption that the interdictor attacks in an optimal way is used as a tool to model
worst-case scenarios and estimate worst-case losses in response to any given fortification
strategy.
The worst-case cost version of PMFP was formulated as a bilevel program by Scaparra and

Church [82]. The model, called the R-interdiction median model with fortification (RIMF),
assumes that the system defender has resources to protect Q facilities, whereas the inter-
dictor has resources to attack R facilities, with Q+R< P . In addition to the fortification
variables Zj defined in §4.2.1, the RIMF uses the following interdiction and assignment
variables:

Sj =

{
1, if facility j is interdicted,

0, otherwise

Yij =

{
1, if customer i is assigned to facility j after interdiction,

0, otherwise.

Additionally, the formulation uses the set Tij = {k ∈ J | dik > dij} defined for each cus-
tomer i and facility j. Tij represents the set of existing sites (not including j) that are farther
than j is from demand i. The RIMF can then be stated mathematically as follows.

(RIMF) minimize H(Z) (40)
subject to∑

j∈J

Zj =Q (41)

Zj ∈ {0,1} ∀ j ∈ J, (42)

where

H(Z) =maximize
∑
i∈I

∑
j∈J

hidijYij (43)
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∑
j∈J

Yij = 1 ∀ i∈ I (44)

∑
j∈J

Sj =R (45)

∑
h∈Tij

Yih ≤ Sj ∀ i∈ I, j ∈ J (46)

Sj ≤ 1−Zj ∀ j ∈ J (47)

Sj ∈ {0,1} ∀ j ∈ J (48)

Yij ∈ {0,1} ∀ i∈ I, j ∈ J (49)

In the above bilevel formulation, the leader allocates exactly Q fortification resources (41)
to minimize the highest possible level of weighted distances or costs, H, (40) deriving from
the loss of R of the P facilities. That H represents worst-case losses after the interdiction
of R facilities is enforced by the follower problem, whose objective involves maximizing
the weighted distances or service costs (43). In the lower-level interdiction problem (RIM;
Church et al. [21]), constraints (44) state that each demand point must be assigned to a
facility after interdiction. Constraint (45) specifies that only R facilities can be interdicted.
Constraint (46) maintains that each customer must be assigned to its closest open facility
after interdiction. More specifically, these constraints state that if a given facility j is not
interdicted (Sj = 0), a customer i cannot be served by a facility further than j from i. Con-
straints (47) link the upper- and lower-level problems by preventing the interdiction of any
protected facility. Finally, constraints (42), (48), and (49) represent the integrality require-
ments for the fortification, interdiction, and assignment variables, respectively. Note that
the binary restrictions for the Yij variables can be relaxed, because an optimal solution with
fractional Yij variables only occurs when there is a distance tie between two nondisrupted
closest facilities to customer i. Such cases, although interesting, do not affect the optimality
of the solution.
Church and Scaparra [18] and Scaparra and Church [81] demonstrate that it is possible to

formulate (RIMF) as a single-level program and discuss two different single-level formula-
tions. However, both formulations require the explicit enumeration of all possible interdiction
scenarios and, consequently, their applicability is limited to problem instances of modest
size. A more efficient way of solving (RIMF) is through the implicit enumeration scheme
proposed by Scaparra and Church [82] and tailored to the bilevel structure of the problem.
A stochastic version of (RIMF), in which an attempted attack on a facility is successful

only with a given probability, can be obtained by replacing the lower-level interdiction model
(43)–(49) with the probabilistic R-interdiction median model introduced by Church and
Scaparra [19].
Different variants of the RIMF model, aiming at capturing additional levels of complexity,

are currently under investigation. Ongoing studies focus, for example, on the development
of models and solution approaches for the capacitated version of the RIMF.
The RIMF assumes that at most R facilities can be attacked. Given the large degree of

uncertainty characterizing the extent of man-made and terrorist attacks, this assumption
should be relaxed to capture additional realism. An extension of (RIMF) that includes
random numbers of possible losses as well as theoretical results to solve this expected loss
version to optimality are currently under development.
Finally, bilevel fortification models similar to (RIMF) can be developed for protecting facil-

ities in supply systems with different service protocols and efficiency measures. For example,
in emergency service and supply systems, the effects of disruption may be better measured
in terms of the reduction in operational response capability. In these problem settings, the
most disruptive loss of R facilities would be the one causing the maximal drop in user
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demand that can be supplied within a given time or distance threshold. This problem can
be modeled by replacing the interdiction model (43)–(49) with the R-interdiction covering
problem introduced by Church et al. [21] and by minimizing, instead of maximizing, the
upper-level objective function H, which now represents the worst-case demand coverage
decrease after interdiction.

4.3. Network Design Models
The literature dealing with the disruption of existing networked systems has primarily
focused on the analysis of risk and vulnerabilities through the development of interdiction
models. Interdiction models have been used by several authors to identify the most critical
components of a system, i.e., those nodes or linkages that, if disabled, cause the greatest
disruption to the flow of services and goods through the network. A variety of models, which
differ in terms of objectives and underlying network structures, have been proposed in the
interdiction literature. For example, the effect of interdiction on the maximum flow through
a network is studied by Wollmer [105] and Wood [106]. Israeli and Wood [48] analyze the
impact of link removals on the shortest path length between nodes. Lim and Smith [61] treat
the multicommodity version of the shortest path problem, with the objective of assessing
shipment revenue reductions due to arc interdictions. A review of interdiction models is
provided by Church et al. [21].
Whereas interdiction models can help reveal potential weaknesses in a system, they do

not explicitly address the issue of optimizing security. Scaparra and Cappanera [80] demon-
strate that securing those network components that are identified as critical in an optimal
interdiction solution will not necessarily provide the most cost-effective protection against
disruptions. Optimal interdiction is a function of what is fortified, so it is important to cap-
ture this interdependency within a modeling framework. The models detailed in the next
section explicitly addressed the issue of fortification in networked systems.

4.3.1. Expected Cost. In this section, we present the reliable network fortification prob-
lem (RNFP), which can be seen as the protection counterpart of the RNDP discussed in
§3.3.1. The problem is formulated below by using the same notation as in §3.3.1 and the
fortification variables Zj = 1 if node j is fortified, and Zj = 0 otherwise.

(RNFP) minimize
∑
s∈S

qs

∑
(i, j)∈A

dijYijs (50)

subject to∑
(j, i)∈A

Yjis −
∑

(i, j)∈A

Yijs = bj ∀ j ∈ V \{u, v}, s∈ S (51)

∑
(j, i)∈A

Yjis ≤ (1− ajs)kj + ajskjZj ∀ j ∈ V0, s∈ S (52)

∑
j∈J

Zj =Q (53)

Zj ∈ {0,1} ∀ j ∈ V0 (54)

Yijs ≥ 0 ∀ (i, j)∈A, s∈ S (55)

The general structure of the RNFP and the meaning of most of its components are as
in the RNDP. A difference worth noting is that now the capacity constraints (52) maintain
that each fortified node preserves its original capacity in every failure scenario.
The RNFP can be easily modified to handle the problem in which fortification does not

completely prevent node failures but only reduces the impact of disruptions. As an example,
we can assume that a protected node only retains part of its capacity in case of failure and
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that the level of capacity that can be secured depends on the amount of protective resources
invested on that node. To model this variation, we denote by fj the fortification cost incurred
to preserve one unit of capacity at node j and by B the total protection budget available.
Also, we define the continuous decision variables Tj as the level of capacity that is secured at
node j (with 0≤ Tj ≤ kj). RNFP can be reformulated by replacing the capacity constraints
(52) and the cardinality constraints (53) with the following two sets of constraints:∑

(j, i)∈A

Yjis ≤ (1− ajs)kj + ajsTj ∀ j ∈ V0, s∈ S (56)

and ∑
j∈J

fjTj ≤B. (57)

4.3.2. Worst-Case Cost. The concept of protection against worst-case losses for network
models has been briefly discussed by Brown et al. [14] and Salmeron et al. [77]. The difficulty
in addressing this kind of problem is that their mathematical representation requires build-
ing tri-level optimization models, to represent fortification, interdiction, and network flow
decisions. Multilevel optimization problems are not amenable to solution by standard mixed
integer programming methodologies, and no universal algorithm exists for their solutions.
To the best of our knowledge, the first attempt at modeling and solving network problems
involving protection issues was undertaken by Scaparra and Cappanera [80], who discuss two
different models: In the first model, optimal fortification strategies are identified to thwart
as much as possible the action of an opponent who tries to disrupt the supply task from a
supply node to a demand node by disabling or interdicting network linkages. This model is
referred to as the shortest path interdiction problem with fortification (SPIF). In the second
model, the aim is to fortify network components so as to maximize the flow of goods and
services that can be routed through a supply network after a worst-case disruption of some
of the network nodes or linkages. This model is referred to as the maximum flow interdiction
problem with fortification (MFIF). The two multilevel models incorporate in the lower level
the interdiction models described by Israeli and Wood [48] and by Wood [106], respectively.
In both models, there is a supply node o and a demand node d. Additionally, in the SPIF,

each arc (i, j) has a penalty of pij associated with it that represents the cost increase to
ship flow through it if the arc is interdicted. (The complete loss of an arc can be captured
in the model by choosing pij sufficiently large.) In the MFIF, each arc has a penalty rij

representing the percentage capacity reduction of the arc deriving from interdiction. (If
rij = 100%, then an interdicted arc (i, j) is completely destroyed.) The remaining notation
used by the two models is the same as in §§3.3.1 and 4.3.1.
Note that in both models, it is assumed that the critical components that can be inter-

dicted and protected are the network linkages. However, it is easy to prove that problems
in which the critical components are the nodes can be reduced to critical arc models by
opportunely augmenting the underlying graph (Corley and Chang [23]). Hence, we describe
the more-general case of arc protection and interdiction.
The three-level SPIF can be formulated as follows.

(SPIF) min
Z∈F

max
S∈D

min
Y

∑
(i, j)∈A

(dij + pijSij)Yij (58)

subject to∑
(j, i)∈A

Yji −
∑

(i, j)∈A

Yij = bj ∀ j ∈ V (59)

Sij ≤ 1−Zij ∀ (i, j)∈A (60)

Yij ≥ 0 ∀ (i, j)∈A (61)
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where F = {Z ∈ {0,1}n|∑(i, j)∈A Zij = Q} and D = {S ∈ {0,1}n|∑(i, j)∈A Sij = R}. Also,
as in standard shortest path problems, we define bo = 1, bd = −1, and bj = 0 for all the
other nodes j in V . The objective function (58) computes the minimum-cost path after the
worst-case interdiction of R unprotected facilities. This cost includes the penalties associated
with interdicted arcs. Protected arcs cannot be interdicted (60).
The MFIF model can be formulated in a similar way as follows.

(MFIF) max
z∈F

min
s∈D

max
Y ≥0

W (62)

subject to∑
(j, i)∈A

Yji −
∑

(i, j)∈A

Yij =W j = o (63)

∑
(j, i)∈A

Yji −
∑

(i, j)∈A

Yij = 0 ∀ j ∈ V \{o, d} (64)

∑
(j, i)∈A

Yji −
∑

(i, j)∈A

Yij =−W j = d (65)

Yij ≤ kij(1− rijSij) ∀ (i, j)∈A (66)

(60)–(61)

In (MFIF), the objective (62) is to maximize the total flow W through the network after
the worst-case interdiction of the capacities of R arcs. Capacity reductions due to interdiction
are calculated in (66). Constraints (63)–(65) are standard flow conservation constraints for
maximum-flow problems.
The two three-level programs (SPIF) and (MFIF) can be reduced to bilevel programs by

taking the dual of the inner network flow problems. Scaparra and Cappanera [80] show how
the resulting bilevel problem can be solved efficiently through an implicit enumeration
scheme that incorporates network optimization techniques. The authors also show that opti-
mal fortification strategies can be identified for relatively large networks (hundreds of nodes
and arcs) in reasonable computational time and that significant efficiency gains (in terms
of path costs or flow capacities) can be achieved even with modest fortification resources.
Model (MFIF) can be easily modified to handle multiple sources and multiple destina-

tions. Also, a three-level model can be built along the same lines as (SPIF) and (MFIF) for
multicommodity flow problems. For example, by embedding the interdiction model proposed
in Lim and Smith [61] in the three-level framework, it is possible to identify optimal forti-
fication strategies for maximizing the profit that can be obtained by shipping commodities
across a network, while taking into account worst-case disruptions.

5. Conclusions
In this tutorial, we have attempted to illustrate the wide range of strategic planning models
available for desiging supply chain networks under the threat of disruptions. A planner’s
choice of model will depend on a number of factors, including the type of network under
consideration, the status of existing facilities in the network, the firm’s risk preference, and
the resources available for constructing, fortifying, and operating facilities.
We believe that several promising avenues exist for future research in this field. First,

the models we discussed in this tutorial tend to be much more difficult to solve than their
reliable-supply counterparts—most have significantly more decision variables, many have
additional hard constraints, and some have multiple objectives. For these models to be
implemented broadly in practice, better solution methods are required.
The models presented above consider the cost of reassigning customers or rerouting flow

after a disruption. However, other potential repercussions should be modeled. For example,
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firms may face costs associated with destroyed inventory, reconstruction of disrupted facil-
ities, and customer attrition (if the disruption does not affect the firm’s competitors). In
addition, the competitive environment in which a firm operates may significantly affect the
decisions the firm makes with respect to risk mitigation. For many firms, the key objective
may be to ensure that their post-disruption situation is no worse than that of their com-
petitors. Embedding these objectives in a game-theoretic environment is another important
extension.
Finally, most of the existing models for reliable supply chain network design use some

variation of a minimum-cost objective. Such objectives are most applicable for problems
involving the distribution of physical goods, primarily in the private sector. However, reliabil-
ity is critical in the public sector as well, for the location of emergency services, post-disaster
supplies, and so on. In these cases, cost is less important than proximity, suggesting that
coverage objectives may be warranted. The application of such objectives to reliable facility
location and network design problems will enhance the richness, variety, and applicability
of these models.
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